范文 > 论文
+

城市规模城市化率与碳排放关系论文

2019-12-21    作者:    来源:

  一、引言

  联合国政府间气候变化委员会(IPCC)最新发布的第五次气候变化评估报告认为,人类活动“极其可能”是20 世纪中期以来观测到的全球气候变暖的主要原因。城市是人口、建筑、交通、工业、物流的集中地,其面积只占地球表面面积的2%,人口占总人口的50%,但温室气体排放却占总量的70%。因此,城市化和碳排放关系引起了广泛关注。相关文献对城市化和碳排放关系的研究主要有两条线索:一是围绕城市化率和环境的关系,考察人口城乡分布对人均碳排放的影响,二是围绕城市规模和环境的关系,探寻对环境最有利的城市规模。

  从城市化率的角度, 多数文献认为城市化率与碳排放有较强的相关关系。针对中国的研究发现,城市化水平在碳排放影响因素中处于主导地位。薛冰等利用112 个国家和地区的数据发现, 随着城市化率上升,人均碳排放量逐步增加。城市化对温室气体排放的影响是人口城乡结构变化所引发的生产与消费行为变化对碳排放的影响,从这个角度看,城市化带来了高能耗和相应的高碳排放。但是,城市化也可能有利于减少温室气体排放。其可能的途径是:城市化使产业组织结构、技术结构、产品结构得到更合理调整,资源得到更合理的利用;城市高度集中的人口和经济活动形成能源消费的规模效应,降低人均能源需求; 城市化有利于环保科技创新,为减少温室气体排放提供了可能。王子敏和范从来利用中国的省级面板数据, 发现城市化和能耗之间符合倒N 形曲线, 城市化所导致的能耗由降到升的拐点出现在城市化率为27.3%,能耗由升到降的拐点在城市化率为76.2%。王钦池和王芳也注意到了城市化率和碳排放之间的非线性关系。

  对于城市规模和碳排放关系的研究是在最优城市规模理论上发展起来的。传统的最优城市规模理论主要是基于城市成本―收益的理论和经验研究。20 世纪90 年代以来, 最佳城市规模理论的研究重点从成本收益的经济角度转移到城市规模和环境质量的关系。Capelb 和Canagni 从人均能源使用和污染物排放的角度探讨了最优城市化规模问题,认为城市负荷效应与城市规模呈正U 型曲线关系。王桂新和武俊奎基于中国地级市数据发现城市规模的扩张使得碳排放强度上升。许抄军认为中国的城市规模和资源消耗之间的经验模型为正N 型曲线,最优城市规模为1060 万人。随着全球环境的恶化,过大规模的城市对环境的不利影响受到了越来越多的重视。大城市乃至特大城市不断涌现,给生态环境造成了沉重的负担。

  可见,已有文献对于城市化和碳排放(环境质量) 关系的研究是从城市化率或者城市规模的角度分别展开的。基于城市化率的研究为从宏观角度认识城市化对环境的影响提供了有益启示,基于城市规模的研究则为认识城市影响环境的微观机制提供了依据。然而,城市化是一个城市规模不断扩大和城市化率不断提高的相互作用过程,仅仅从城市化率或者城市规模一个角度难以完整揭示城市化过程对碳排放的影响。本文的目的是把城市化对碳排放的影响分解为城市化率和城市规模两个因素,从而更全面地认识城市化和环境的关系,并在此基础上从城市规模和城市化率相互协调的角度提出推进城市化的政策建议

  二、模型和数据

  1.模型设计

  城市规模和城市化率是衡量城市化进程的两个基本指标。大量研究证实,城市规模与能源消费和碳排放有密切关系,在既定的城市化水平下,城市资源过于分散或者过于集中都会导致效率损失。而城市化率是对城市化总体水平的衡量,可以反映不同规模城市对碳排放的综合影响。因此,有必要从城市规模和城市化率两个维度考察城市化和碳排放的关系。假设某个地区的总人口为p,有a 和b 两个代表性城市,规模分别为sa和sb,城市化率为u。容易理解,城市a 和b 对该地区人均碳排放量的“贡献”是城市规模及其占全国人口总量比例的函数。

  模型的因变量是人均CO2排放量,用以衡量城市化对环境的影响。自变量包括城市规模和城市化率。其中,城市化率是城市人口占总人口的百分比。根据数据的可得性,采用不同规模等级的城市人口占城市总人口的百分比作为衡量城市规模的指标。本文把城市分为5 个规模等级,分别为1000 万人以上、500 万-1000 万人、100 万-500 万人、50 万-100万人、50 万人以下。除了上述自变量外,已有研究认为经济发展水平、能源利用技术、人口密度等对碳排放有重要影响,本文把上述变量作为控制变量。经济发展水平的衡量指标是人均国民收入。考虑到城市化、城市规模和人均国民收入的相关性,当仅把人均国民收入的一次项纳入模型时,可能把人均GDP和碳排放之间的曲线关系“转嫁”给城市化因素,从而无法体现城市和碳排放之间的关系。作为对比,在模型中分别对人均GDP 的一次项和二次项进行回归。技术因素用单位GDP 的CO2排放量表示。所有原始数据均以自然对数的形式纳入模型。

  2.数据来源和描述

  本文的数据来自联合国和世界银行数据库。样本期为1960―2009 年。其中,城市化相关数据来自联合国数据库,其他数据来自世界银行数据库。人均GDP 和人均国民收入以2000 年不变价格美元表示。剔除有缺失值的样本后,最终包括161 个国家的6361 个观测值。其中,高收入国家44 个,中等收入国家85 个,低收入国家32 个。

  3.模型形式确定

  本文使用的是面板数据,同时具有截面维度和时序维度的特征,包含了个体、时间和指标三个方向的信息。因此需要对模型设定形式进行假设检验,以确定其属于不变截距模型、变截距模型还是变系数模型。本文考察的是161 个国家的数据,各国的碳排放水平和城市化水平、城市规模都有差异,理论上选择回归模型时应体现个体差异。样本期较长(50 年),时期变更所产生的影响应予考虑。因此,构建同时含有个体和时期效应的双向效应模型是理想的选择。经F 检验,证实选择双向固定效应变截距模型是合适的。

  三、结果和分析

  为了比较不同因素对人均碳排放的影响,在基准模型的基础上,本文构建了不同的模型。模型①和②考察城市化率和城市规模两个因素对人均碳排放的影响;模型③和④考察城市规模对人均碳排放的影响;模型⑤和⑥考察城市化率对人均碳排放的影响。为了考察收入水平对碳排放的非线性影响,模型①③⑤含有人均国民收入的二次项和三次项;模型②④⑥中只含有人均国民收入的一次项。所用软件为Eviews 7.2,结果见表2。

  1.城市规模对人均碳排放的影响

  模型①和②的结果均显示,城市规模对人均碳排放有显著影响。以50 万人以下规模的城市作为参照组,500-1000 万以及1000 万人口以上规模城市占城市人口比重的回归系数均为正值, 这说明500 万人口以上规模城市的碳排放压力大于参照组; 而50-100 万以及100-500 万人口规模城市的回归系数为负值, 说明其碳排放压力小于参照组。进一步对比,人均碳排放压力最小的是100-500 万人规模城市,其次是50-100 万人规模城市,1000 万以上人口规模城市的碳排放压力最大。

  对比模型①和②以及模型③和④结果发现,收入水平以一次项形式还是多次项形式纳入模型,城市规模的回归系数的符号没有变化,但是回归系数的大小发生了变化,人均收入水平以一次项进入模型时的系数的绝对值大于以三次项形式纳入的模型。其原因在于,城市规模和经济发展水平有明显关系,经济发展水平越高,城市规模也越大。当考虑经济水平对碳排放的非线性影响时,城市规模的系数反映的是城市规模本身对碳排放的净影响。因此,本文主要以有人均国民收入三次项的模型结果作为分析依据。

  进一步,为了估计对环境最优的城市规模,取不同规模等级城市的均值作为城市规模的近似值。根据样本计算得到,50-100 万的城市平均规模为68.8万人,100-500 万的城市平均规模为196 万人,500-1000 万城市的平均规模为720 万人,1000 万人以上的城市的平均规模为1650 万人。规模在50 万以下城市的平均规模取25 万人。

  基于模型①(考虑城市规模和城市化率两个因素)和模型③只考虑城市规模因素)的不同等级城市规模与碳排放系数的关系曲线。结果显示,三次曲线的拟合效果优于一次和二次曲线。这表明,城市规模和碳排放呈倒N 型曲线关系, 人均碳排放量最低的城市规模为300 万人,人均碳排放最高的城市规模为1300 万人左右。这与许抄军的结果接近。

  2. 城市化率对人均碳排放的影响

  模型①②⑤⑥的结果显示,城市化率对人均碳排放有显著影响。模型①和②同时把城市化率和城市规模纳入模型,城市化率的二次项的回归系数是正值, 这说明城市化率和人均碳排放量的关系是U型曲线。

  3.控制变量对碳排放的影响

  所有模型的回归结果均显示,劳动年龄人口比重和碳排放强度与人均碳排放量都显著正相关,而人口密度与人均碳排放量显著负相关,这与已有文献是一致的。根据模型①的结果,劳动年龄人口比重和碳排放强度每变动1%, 人均碳排放量同向变动0.844%和0.936%。人口密度每变动1%,人均碳排放量反向变动0.279%。

  收入水平对碳排放的影响相对复杂。在模型②④⑥中,人均国民收入的一次项与人均碳排放量显著正相关;在模型①③⑤中,人均国民收入对数的三次项系数均为负值,二次项的系数为正值,因此理论上人均碳排放和人均国民收入之间为倒N 型曲线关系。

  随着人均收入的增加,人均碳排放是单调递增的。对比看,当模型中只含有人均收入的一次项时,人均收入对碳排放的影响明显大于含有三次项时的影响。上述结果说明,在非线性假设下,经济水平对环境的影响小于线性假设。这也从一个角度说明,已有文献在讨论经济发展水平和人均碳排放关系时, 有的认为二者是倒U 型曲线,有的认为是N 型曲线, 或者是其他形式的曲线,实际上都是涵盖了城市化和技术创新等多种因素的综合结果,并没有清晰地表明经济发展水平(或者消费水平)如何影响碳排放量。

  四、基于碳排放约束的最优城市化路径

  前面的分析表明, 城市化对碳排放的影响是城市规模和城市化率两个因素的综合效应。理论上把城市化水平控制在较低的水平对环境是有利的,但是现实中城市化还承载着经济和社会发展的多重功能,因此推进城市化仍然是一个现实的理性选择。既然城市化对环境的负面影响难以避免,如何实现城市规模和城市化水平之间的均衡,从而把城市化对环境的负面影响控制在最小程度,就具有重要的现实意义。

  为了减少人均碳排放量,可行的路径是把城市规模扩大,但是其扩大程度是有上限值的,并非城市规模越大越好。换言之,在既定的城市化状态下,城市规模的扩大是有条件的。显然,由于城市规模、城市化率、总人口之间是密切相关的,因此,基于人均碳排放最小化的目标,需要在城市规模和城市化率之间寻求平衡。

  五、总结和讨论

  人类活动对气候变化具有重要影响,这种认识已经成为共识。然而, 对于人类最重要的活动之一――城市化影响气候变化的机制,已有研究尚存在明显不足。特别的,城市化的环境效应是城市规模扩大和城市化率提高的综合结果,仅以城市化率或者城市规模都不能完整揭示城市化过程影响环境的内在机制。基于上述背景, 本文利用近半世纪(1960―2009 年)161 个国家的面板数据,构建双向固定效应模型,把城市化对碳排放的影响分解为城市化率和城市规模两个因素,揭示了城市化过程中人口城乡分布和城市内部结构变化对环境的影响。理论上存在对环境最有利的城市规模和城市化率,基于碳排放约束的城市化路径应该实现城市规模和城市化率的相互平衡。

  本文的结论具有重要的现实意义。作为发展中国家,中国的城镇化进程远未完成。中国已经明确把城镇化作为未来经济发展的主要动力之一。但是对于城镇化的发展模式,究竟是优先发展小城镇还是发展大城市,长期以来都存在较大分歧。本文的结论显示,从减少碳排放的角度,城镇化发展不能简单地说优先发展中小城镇,或者优先发展大城市,而是应该统筹考虑城市规模和城市化总体水平两个因素,这为城镇化发展提供了一个重要原则。

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,请联系我们删除

阅读:130    评论:0
  • 相关文章
  • 热门文章
关于我们 - RSS订阅 - 网站地图 - 标签集合 - 手机版
COPYRIGHT © 2018  闽ICP备2022004743号
【电脑版】  【回到顶部】